Automatic Image Retargeting

Fitting big pictures in small displays

Vidya Setlur1,5
Ramesh Raskar3

Saeko Takagi2

Michael Gleicher4

Bruce Gooch1

Northwestern University1
Wakayama University2
Mitsubishi Electric Research Labs3
University of Wisconsin4
Nokia Research Center5
This is your grandfather’s portable computer
Retargeting Image to a Cell Phone

Crop

Scale

Our Result
The Goal

Crop Scale Retargeted
Implementation Outline

1. Segmentation
2. Importance Map
3. Decomposition
4. Background Renewal
5. Paste
6. Resize Segments

- If the segmentation fits the required size?
- If the decomposition fits the new background?
Mean-shift Image Segmentation

(Meer and Georgescu, *IEEE Trans on Pattern Analysis & Machine Intelligence*, ’02)
Importance Map Generation
Background Renewal
Importance Object Compositing

- Desired Size
- Original Bounding Boxes
- Auto Crop
- Desired Size
- Centroids
- Background Renewal
- Resize Background
- Paste First Object
- Add Second Object
- Bounding Boxes Overlap
- Resize Until Fits
- Add Third Object
- Bounding Boxes Do Not Overlap
- Paste Third Object
Objects and Shadows
Thanks

Reviewers and organizers of MUM 2005
NSF 01416284/0415083
Northwestern and Nokia Graphics Groups
Image Segmentation

Apply color measurement in CIE where pixels in each region form 3D histograms. Then we perform histogram intersection (*Swain and Ballard 1991*).
Image Attention Model

Saliency Map = $\frac{1}{3}(N(I) + N(C) + N(O))$

Importance Value = $\sum_{\text{Pixel gray-scale}} \cdot \text{Positional Weight}$

Positional weight based on a normalized Gaussian template centered at the image.
Face Attention Model

Importance Value = $\sqrt{\text{Area}_{\text{face}} \cdot \text{Positional weight}}$

Positional weight based on:

<table>
<thead>
<tr>
<th></th>
<th>1/3</th>
<th>1/3</th>
<th>1/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{array}{ccc}
1/3 & 1/3 & 1/3 \\
1 & 2 & 1 & 3/12 \\
4 & 8 & 4 & 4/12 \\
1 & 2 & 1 & 5/12 \\
\end{array}
\]
Computing Importance Value

Importance Value for each Object =
Weight of the model \cdot N(\text{Importance Value in the model})